t=-5t^2-5t+180

Simple and best practice solution for t=-5t^2-5t+180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t=-5t^2-5t+180 equation:



t=-5t^2-5t+180
We move all terms to the left:
t-(-5t^2-5t+180)=0
We get rid of parentheses
5t^2+5t+t-180=0
We add all the numbers together, and all the variables
5t^2+6t-180=0
a = 5; b = 6; c = -180;
Δ = b2-4ac
Δ = 62-4·5·(-180)
Δ = 3636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3636}=\sqrt{36*101}=\sqrt{36}*\sqrt{101}=6\sqrt{101}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{101}}{2*5}=\frac{-6-6\sqrt{101}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{101}}{2*5}=\frac{-6+6\sqrt{101}}{10} $

See similar equations:

| f+15/9=5 | | r/7=56 | | 8•x+7=4•x+35 | | y3+3y-14=0 | | x+(2x+4)=10 | | L(h)=42-3.5h | | 17=3t–-12 | | x/2=x+0.5 | | 8x+13=-5-x | | -1+8x=2+7x | | X+15=x+39 | | -2d+18-4d+6=60 | | x1=x+0.5 | | 6(2x+-5=-(x+4) | | -2d*18-4d+6=60 | | -8+3j≤=100 | | 116.5+3x=500 | | -45=m-30 | | h=1/2=3/4 | | a=1/2(16)(19+27) | | 9xx=99 | | a=1/2(33)21+21 | | {12×+8y=144.{10×+12y=168 | | d-8=56 | | (6x+7)+(3x-35)=180 | | 2.4x8^x+1=2^2x | | (5v+6)°(4v+3)°=180 | | (x)/(3)-6=(1)/(4) | | 2x+10=-19 | | (6x+7)(3x-35)=180 | | (3d+5)°(d+7)°=18 | | -2x+65=39 |

Equations solver categories